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Image source: https://plot.ly/~MattSundquist/5405.png

Continuous Measurements
• So far, looked at relationships between discrete outcomes

• For pair of continuous outcomes, use a scatter plot

Of course, not 
all trends look 

like a line

(so don’t just 
do linear 

regression!)



The Importance of Staring at Data

Var. 1

Var. 2

Var. 1

Var. 2

Var. 1

Var. 2

Var. 1

Var. 2

In general: not obvious what curve to fit (if any)

Not enough data 
=> might think 

there's a pattern 
when it's just noise

In general: not obvious if some points are 
outliers and should be excluded



Correlation

Negatively correlated Not really correlated Positively correlated

Beware: Just because two variables appear correlated 
doesn't mean that one can predict the other



Correlation ≠ Causation

Moreover, just because we find correlation in data 
doesn't mean it has predictive value!

Blue: Scaled sunspot 
number (inverted 

after Reagan's 2nd 
term)

Red: Number of 
Republican senators

Image source: http://www.realclimate.org/index.php/archives/2007/05/fun-with-correlations/



Important: At this point in the 
course, we are finding possible 

relationships between two entities
We are not yet making statements about 

prediction (we'll see prediction later in the course)

We are not making statements about causality 
(beyond the scope of this course)



Causality

Studies in 1960's: Coffee drinkers have higher rates of lung cancer
Can we claim that coffee is a cause of lung cancer?

Back then: coffee drinkers also tended to smoke more than non-coffee 
drinkers (smoking is a confounding variable)

To establish causality, groups getting different treatments need to 
appear similar so that the only difference is the treatment

Image source: George Chen



Establishing Causality
If you control data collection

Users Compare outcomes of two groups

Treatment 
Group

Control 
GroupRandomly assign

Randomized controlled trial (RCT) 
also called A/B testing

Example: figure out webpage layout to maximize revenue (Amazon)

Example: figure out how to present educational material to improve 
learning (Khan Academy)

If you do not control data collection
In general: not obvious establishing what caused what



95-865
Part I: Exploratory data analysis

Part II: Predictive data analysis

• Frequency and co-occurrence analysis
• Visualizing high-dimensional data/dimensionality reduction
• Clustering

• Classical classification methods
• Neural nets and deep learning for analyzing images and text

Identify structure present in “unstructured” data

Make predictions using structure found in Part I

• Topic modeling (a special kind of clustering)

Basic probability & statistics



Visualizing High-Dimensional 
Vectors

The next two examples are drawn from:  
http://setosa.io/ev/principal-component-analysis/



Wales

Scotland N. Ireland

England

Visualizing High-Dimensional Vectors

How to 
visualize 
these for 

comparison?

Imagine we 
had hundreds 

of these

Using our earlier analysis: 
Compare pairs of food items across locations  

(e.g., scatter plot of cheese vs cereals consumption)
But unclear how to compare the locations 

(England, Wales, Scotland, N. Ireland)!



The issue is that as humans 
we can only really visualize 
up to 3 dimensions easily

Goal: Somehow reduce the dimensionality of the data 
preferably to 1, 2, or 3



Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Hervé Abdi and Lynne J. Williams. Principal component analysis. Wiley Interdisciplinary Reviews: 
Computational Statistics. 2010.



Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Simplest thing to try: flatten to one of the red axes



Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Simplest thing to try: flatten to one of the red axes

(We could of course flatten to the other red axis)



Principal Component Analysis (PCA)
How to project 2D data down to 1D?



Principal Component Analysis (PCA)
How to project 2D data down to 1D?



Principal Component Analysis (PCA)
How to project 2D data down to 1D?

But notice that most of the variability in the data is not aligned 
with the red axes!

Most variability is along 
this green direction

Rotate!



Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Most v
aria

bility
 is 

alo
ng 

this g
ree

n direc
tion



Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Most v
aria

bility
 is 

alo
ng 

this g
ree

n direc
tion

The idea of PCA actually works for 2D ➔ 2D as well 
(and just involves rotating, and not “flattening” the data)



Principal Component Analysis (PCA)
How to project 2D data down to 1D?

The idea of PCA actually works for 2D ➔ 2D as well 
(and just involves rotating, and not “flattening” the data)

Most v
aria

bility
 is 

alo
ng 

this g
ree

n direc
tion

before 
“flattening”

2nd green axis chosen to be 90° (“orthogonal”) from first green axis

How to rotate 2D data so 1st axis has most variance



Principal Component Analysis (PCA)

• Finds top k orthogonal directions that explain the most 
variance in the data
• 1st component: explains most variance along 1 

dimension
• 2nd component: explains most of remaining variance 

along next dimension that is orthogonal to 1st 
dimension

• …

• “Flatten” data to the top k dimensions to get lower 
dimensional representation (if k < original dimension)



Principal Component Analysis (PCA)

3D example from: 
http://setosa.io/ev/principal-component-analysis/



Principal Component Analysis (PCA)

Demo



PCA reorients data so axes explain 
variance in “decreasing order” 

➔ can “flatten” (project) data onto a 
few axes that captures most variance



Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VfncdNOETcI/AAAAAAAAGp8/
Hea8UtE_1c0/s1600/Blog%2B1%2BIMG_1821.jpg



2D Swiss Roll

PCA would just flatten this thing and  
lose the information that the data actually 
lives on a 1D line that has been curved!



Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VfncdNOETcI/AAAAAAAAGp8/
Hea8UtE_1c0/s1600/Blog%2B1%2BIMG_1821.jpg

PCA would squash down this Swiss 
roll (like stepping on it from the top) 

mixing the red & white parts



2D Swiss Roll



2D Swiss Roll



2D Swiss Roll



2D Swiss Roll



2D Swiss Roll



2D Swiss Roll

This is the desired result



3D Swiss Roll

Projecting down to any 2D plane puts points 
that are far apart close together!



3D Swiss Roll

Projecting down to any 2D plane puts points 
that are far apart close together!

Goal: Low-dimensional representation where similar colored points 
are near each other (we don’t actually get to see the colors)



Manifold Learning
• Nonlinear dimensionality reduction (in contrast to PCA 

which is linear)

• Find low-dimensional “manifold” that the data live on

Basic idea of a manifold:

1. Zoom in on any point (say, x)

2. The points near x look like 
they’re in a lower-dimensional 

Euclidean space 
(e.g., a 2D plane in Swiss roll)



Do Data Actually Live on Manifolds?

Image source: http://www.columbia.edu/~jwp2128/Images/faces.jpeg



Do Data Actually Live on Manifolds?

Phillip Isola, Joseph Lim, Edward H. Adelson. Discovering States and Transformations in 
Image Collections. CVPR 2015.



Do Data Actually Live on Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png



Do Data Actually Live on Manifolds?

Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning. Nature 
2015.



Manifold Learning with Isomap
Step 1: For each point, find 
its nearest neighbors, and 

build a road (“edge”) 
between them

(e.g., find closest 2 
neighbors per point 
and add edges to 

them)

Step 2: Compute  
shortest distance from 

each point to every other 
point where you’re only 
allowed to travel on the 

roads
Step 3: It turns out that given all the distances between pairs of 

points, we can compute what the points should be 
(the algorithm for this is called multidimensional scaling)



Isomap Calculation Example

A
B

C

D
E

Build "symmetric 2-NN" graph  
(add edges for each point to 

its 2 nearest neighbors)

2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

5

In orange: road lengths

5
5

5

8
8

A B C D E

A

B

C

D

E

Shortest distances between 
every point to every other 
point where we are only 

allowed to travel along the 
roads



Isomap Calculation Example

A
B

C

D
E

2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

5

In orange: road lengths

5
5

5

8
8

A B C D E

A 0

B 0

C 0

D 0

E 0

Shortest distances between 
every point to every other 
point where we are only 

allowed to travel along the 
roads

Build "symmetric 2-NN" graph  
(add edges for each point to 

its 2 nearest neighbors)



Isomap Calculation Example
2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

A B C D E

A 0 5

B 0 5

C 0 5

D 0 5

E 0

Shortest distances between 
every point to every other 
point where we are only 

allowed to travel along the 
roads

Build "symmetric 2-NN" graph  
(add edges for each point to 

its 2 nearest neighbors)

A
B

C

D
E

5

In orange: road lengths

5
5

5

8
8



Isomap Calculation Example
2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

A B C D E

A 0 5 8

B 0 5

C 0 5

D 0 5

E 0

Shortest distances between 
every point to every other 
point where we are only 

allowed to travel along the 
roads

Build "symmetric 2-NN" graph  
(add edges for each point to 

its 2 nearest neighbors)

A
B

C

D
E

5

In orange: road lengths

5
5

5

8
8



Isomap Calculation Example
2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

A B C D E

A 0 5 8 13

B 0 5

C 0 5

D 0 5

E 0

Shortest distances between 
every point to every other 
point where we are only 

allowed to travel along the 
roads

Build "symmetric 2-NN" graph  
(add edges for each point to 

its 2 nearest neighbors)

A
B

C

D
E

5

In orange: road lengths

5
5

5

8
8



Isomap Calculation Example
2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

A B C D E

A 0 5 8 13 16

B 0 5

C 0 5

D 0 5

E 0

Shortest distances between 
every point to every other 
point where we are only 

allowed to travel along the 
roads

Build "symmetric 2-NN" graph  
(add edges for each point to 

its 2 nearest neighbors)

A
B

C

D
E

5

In orange: road lengths

5
5

5

8
8



Isomap Calculation Example
2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

A B C D E

A 0 5 8 13 16

B 0 5 10

C 0 5

D 0 5

E 0

Shortest distances between 
every point to every other 
point where we are only 

allowed to travel along the 
roads

Build "symmetric 2-NN" graph  
(add edges for each point to 

its 2 nearest neighbors)

A
B

C

D
E

5

In orange: road lengths

5
5

5

8
8



Isomap Calculation Example
2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

A B C D E

A 0 5 8 13 16

B 0 5 10 13

C 0 5

D 0 5

E 0

Shortest distances between 
every point to every other 
point where we are only 

allowed to travel along the 
roads

Build "symmetric 2-NN" graph  
(add edges for each point to 

its 2 nearest neighbors)

A
B

C

D
E

5

In orange: road lengths

5
5

5

8
8



Isomap Calculation Example
2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

A B C D E

A 0 5 8 13 16

B 0 5 10 13

C 0 5 8

D 0 5

E 0

Shortest distances between 
every point to every other 
point where we are only 

allowed to travel along the 
roads

Build "symmetric 2-NN" graph  
(add edges for each point to 

its 2 nearest neighbors)

A
B

C

D
E

5

In orange: road lengths

5
5

5

8
8



Isomap Calculation Example
2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

A B C D E

A 0 5 8 13 16

B 5 0 5 10 13

C 8 5 0 5 8

D 13 10 5 0 5

E 16 13 8 5 0

Shortest distances between 
every point to every other 
point where we are only 

allowed to travel along the 
roads

Build "symmetric 2-NN" graph  
(add edges for each point to 

its 2 nearest neighbors)

A
B

C

D
E

5

In orange: road lengths

5
5

5

8
8



Isomap Calculation Example
2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

A B C D E

A 0 5 8 13 16

B 5 0 5 10 13

C 8 5 0 5 8

D 13 10 5 0 5

E 16 13 8 5 0

Shortest distances between 
every point to every other 
point where we are only 

allowed to travel along the 
roads

This matrix gets fed into 
multidimensional scaling to get 

1D version of A, B, C, D, E

The solution is not unique!

Build "symmetric 2-NN" graph  
(add edges for each point to 

its 2 nearest neighbors)

A
B

C

D
E

5

In orange: road lengths

5
5

5

8
8



Isomap Calculation Example

Multidimensional scaling demo



3D Swiss Roll Example

Joshua B. Tenenbaum, Vin de Silva, John C. Langford. A Global Geometric 
Framework for Nonlinear Dimensionality Reduction. Science 2000.



Some Observations on Isomap
The quality of the result 
critically depends on the 
nearest neighbor graph

Ask for nearest neighbors to 
be really close by

Allow for nearest neighbors 
to be farther away

There might not be enough 
edges

Might connect points that 
shouldn’t be connected

In general: try different parameters for nearest neighbor graph 
construction when using Isomap + visualize



t-SNE 
(t-distributed stochastic 

neighbor embedding)



t-SNE High-Level Idea #1
• Don't use deterministic definition of which points are neighbors
• Use probabilistic notation instead

0

0.05

0.1

0.15

0.2

A and B are "sim
ilar"

A and C are "sim
ilar"

A and D are "sim
ilar"

... D and E are "sim
ilar"



t-SNE High-Level Idea #2
• In low-dim. space (e.g., 1D), suppose we just randomly 

assigned coordinates as a candidate for a low-dimensional 
representation for A, B, C, D, E (I'll denote them with primes):

A'B'C' D'E'
• With any such candidate choice, we can define a probability 

distribution for these low-dimensional points being similar

0
0.075
0.15

0.225
0.3

A', B' sim
ilar

A', C' sim
ilar

A', D' sim
ilar

... D', E' sim
ilar



0
0.075
0.15

0.225
0.3

A', B' sim
ilar

A', C' sim
ilar

A', D' sim
ilar

... D', E' sim
ilar

t-SNE High-Level Idea #3
• Keep improving low-dimensional representation to make the 

following two distributions look as closely alike as possible

0
0.05
0.1

0.15
0.2

A, B sim
ilar

A, C sim
ilar

A, D sim
ilar

... D, E sim
ilar

This distribution stays fixed

This distribution changes as we move around low-dim. points



Technical Detail for t-SNE

pj|i =
exp(−∥xi−xj∥2

2σ2
i

)
∑

k ̸=i exp(−∥xi−xk∥2

2σ2
i

)

For a specific point i, point i picks point j (≠ i) to 
be a neighbor with probability:

Suppose there are n high-dimensional points x1, x2, …, xn

𝜎i (depends on i) controls the probability in which point j would be picked by i 
as a neighbor (think about when it gets close to 0 or when it explodes to ∞)

𝜎i is controlled by a knob called 'perplexity' 
(rough intuition: it is like selecting small vs large neighborhoods for Isomap)

Fleshing out high level idea #1

Points i and j are "similar" with probability:

This defines the earlier blue distribution

pi,j =
pj|i + pi|j

2n



Technical Detail for t-SNE

Low-dim. points i and j are "similar" with probability:

Denote the n low-dimensional points as x1', x2', …, xn'

Fleshing out high level idea #2

This defines the earlier green distribution

qi,j =
1

1+∥x′
i −x′

j ∥2

∑
k ̸=m

1
1+∥x′

k−x′
m∥2

Fleshing out high level idea #3

Approximately minimize (with respect to qi,j) the following cost:
∑

i ̸=j

pi ,j log
pi ,j

qi ,j

This cost is called the “KL divergence” between distributions p and q



Manifold Learning with t-SNE

Demo



t-SNE Interpretation

https://distill.pub/2016/misread-tsne/



Visualization

Many real UDA problems: 
The data are messy and it’s not 

obvious what the “correct” 
labels/answers look like, and 

“correct” is ambiguous!

This is largely why I am covering “supervised” methods (require labels) 
after “unsupervised” methods (don’t require labels)

Top right image source: https://bost.ocks.org/mike/miserables/

Example: Trying to 
understand how people 

interact in a social network

Important: 
Handwritten digit demo was a 
toy example where we know 
which images correspond to 

digits 0, 1, … 9

is a way of debugging data analysis!



Dimensionality Reduction for Visualization

• There are many methods (I've posted a link on the course 
webpage to a scikit-learn example using ~10 methods)

• PCA and t-SNE are good candidates for methods to try first

• PCA is very well-understood; the new axes can be interpreted

• If you have good reason to believe that only certain features 
matter, of course you could restrict your analysis to those!

• Nonlinear dimensionality reduction: new axes may not really be 
all that interpretable (you can scale axes, shift all points, etc)


